

© 2014-2018 Julien Danjou. All rights reserved.

Acknowledgements

Writing this first book has been a tremendous effort. Looking back, I had no
clue how crazy this journey would be but also now idea how fulfilling it has been.

They say that if you want to go fast you should go alone, but that if you want
to go far you should go together. As this is the fourth edition of the original book I
wrote, I would not have made it without people along the way. This is a team effort
and I would like to thank everyone who participated.

Most of the interviewees gave me their time and trust without a second thought,
and I owe them a lot of what we teach in this book: Doug Hellmann for its great
advice about building libraries, Joshua Harlow for his good mood and knowledge
about distributed systems, Christophe de Vienne for his experience around building
a framework, Victor Stinner for his incredible knowledge about CPython, Dimitri
Fontaine for his wisdom on databases, Robert Collins for messing up with testing,
Nick Coghlan for his work in getting Python in a better shape and Paul Tagliamonte
for his amazing hacker spirit.

Thanks to the No Starch crew for working with me on bringing this book to a
brand new level — especially to Liz Chadwick for her editing skills, Laurel Chun for
keeping me on track and Michael Driscoll for his technical hindsight.

My gratitude also goes to the Free Software communities who help me grow
and gave me the willingness to share my knowledge back, especially to the Python
community which always has been welcoming and enthusiastic.

Contents

1 Starting Your Project 21

1.1 Versions of Python . 21

1.2 Laying Out Your Project . 23

1.2.1 What to Do . 23

1.2.2 What Not to Do . 25

1.3 Version Numbering . 26

1.4 Coding Style & Automated Checks 28

1.4.1 Tools to Catch Style Errors 30

1.4.2 Tools to Catch Coding Errors 31

1.5 Interview with Joshua Harlow . 32

2 Modules, Libraries and Frameworks 36

2.1 The Import System . 36

2.1.1 The sys Module . 38

2.1.2 Import Paths . 39

2.1.3 Custom Importers . 40

2.1.4 Meta Path Finders . 41

2.2 Useful Standard Libraries . 43

CONTENTS

2.3 External Libraries . 46

2.3.1 The External Libraries Safety Checklist 47

2.3.2 Protecting Your Code with an API Wrapper 48

2.4 Package Installation: Getting More From pip 49

2.5 Using and Choosing Frameworks 52

2.6 Doug Hellmann on Python Libraries 53

3 Documentation and Good API Practice 63

3.1 Documenting with Sphinx . 64

3.2 Getting started with Sphinx and reST 66

3.3 Sphinx Modules . 68

3.4 Automating the Table of Contents with autosummary 69

3.5 Automating Testing with doctest 70

3.6 Writing a Sphinx Extension . 72

3.7 Managing Changes to Your API 74

3.7.1 Numbering API Versions 75

3.7.2 Documenting Your API Changes 76

3.7.3 Marking Deprecated Functions with the warnings Module . 78

3.8 Summary . 81

3.9 Interview with Christophe de Vienne 82

4 Handling Timestamps and Time Zones 87

4.1 The Problem of Missing Time Zones 88

4.2 Building Default datetime Objects 89

3 / 333

CONTENTS

4.3 Time Zone-Aware Timestamps with dateutil 90

4.4 Serializing datetime Objects . 93

4.5 Solving Ambiguous Times . 95

4.6 Summary . 96

5 Distributing Your Software 98

5.1 A Bit of History . 98

5.2 Packaging with setup.cfg . 102

5.3 The Wheel Format Distribution Standard 104

5.4 Sharing Your Work with the World 107

5.5 Entry Points . 112

5.5.1 Visualising Entry Points 113

5.5.2 Using Console Scripts . 115

5.5.3 Using Plugins and Drivers 118

5.5.4 Summary . 122

5.6 Interview with Nick Coghlan . 123

6 Unit Testing 126

6.1 The Basics of Testing . 126

6.1.1 Some Simple Tests . 127

6.1.2 Skipping Tests . 130

6.1.3 Running Particular Tests 132

6.1.4 Running Test in Parallel 134

6.1.5 Creating Objects Used in Tests with fixtures 135

4 / 333

CONTENTS

6.1.6 Running Test Scenarios 138

6.1.7 Controlled Test Using Mocking 139

6.1.8 Revealing Untested Code with coverage 145

6.2 Virtual Environments . 149

6.2.1 Setting Up a Virtual Environment 150

6.3 Using virtualenv with tox . 152

6.3.1 Re-creating an Environment 154

6.3.2 Using Different Python Versions 155

6.3.3 Integrating Other Tests . 156

6.4 Testing Policy . 157

6.5 Robert Collins on Testing . 159

7 Methods and Decorators 163

7.1 Decorators and When to Use Them 163

7.1.1 Creating Decorators . 164

7.1.2 Writing Decorators . 165

7.1.3 Stacking Decorators . 167

7.1.4 Writing Class Decorators 168

7.1.5 RetrievingOriginal Attributes with the update_wrapperDec-
orator . 170

7.1.6 wraps: A Decorator for Decorators 172

7.1.7 Extracting Relevant Information with inspect 173

7.2 How Methods Work in Python . 174

7.3 Static methods . 176

5 / 333

CONTENTS

7.4 Class Methods . 178

7.5 Abstract Methods . 179

7.6 Mixing Static, Class, and Abstract Methods 181

7.7 Putting Implementations in Abstract Methods 184

7.8 The Truth About super . 185

7.9 Summary . 189

8 Functional Programming 190

8.1 Creating Pure Functions . 191

8.2 Generators . 192

8.2.1 Creating a Generator . 193

8.2.2 Returning and Passing Values with yield 195

8.2.3 Inspecting Generators . 197

8.3 List comprehensions . 199

8.4 Functional Functions Functioning 200

8.4.1 Applying Functions to Items with map 201

8.4.2 Filtering Lists with filter 201

8.4.3 Getting Indexes with enumerate 202

8.4.4 Sorting a List with sorted 202

8.4.5 Finding Items That Satisfy Conditions with any and all . . 203

8.4.6 Combining Lists with zip 204

8.4.7 A Common Problem Solved 205

8.4.7.1 Finding the Item with Simple Code 205

8.4.7.2 Finding the Item Using first 207

6 / 333

CONTENTS

8.4.7.3 Using Lambda with functools 207

8.5 Using itertools Functions . 210

8.6 Summary . 212

9 The Abstract Syntax Tree, Hy, And Lisp-Like Attributes 213

9.1 Looking at the AST . 214

9.2 Writing a Program Using the AST 216

9.2.1 The AST Objects . 218

9.2.2 Walking Through an AST 219

9.3 Extending flake8 with AST Checks 221

9.3.1 Writing the Class . 222

9.3.2 Ignoring Irrelevant Code 223

9.3.3 Checking for the Correct Decorator 224

9.3.4 Looking for self . 225

9.4 A Quick Introduction to Hy . 228

9.5 Summary . 231

9.6 Interview with Paul Tagliamonte 231

10 Performances and Optimizations 236

10.1 Data Structures . 237

10.2 Understanding Behavior Through Profiling 240

10.2.1 cProfile . 240

10.2.2 Disassembling with the dis Module 243

10.3 Defining Functions Efficiently . 246

7 / 333

CONTENTS

10.4 Ordered Lists and Bisect . 248

10.5 Namedtuple and Slots . 252

10.6 Memoization . 259

10.7 Faster Python with PyPy . 261

10.8 Achieving Zero Copy with the Buffer Protocol 263

10.9 Summary . 270

10.10Victor Stinner on Optimization . 270

11 Scaling and Architecture 274

11.1 Multithreading in Python and Its Limitations 274

11.2 Multiprocessing vs. Multithreading 277

11.3 Event-Driven Architecture . 279

11.4 Other Options and asyncio . 282

11.5 Service-Oriented Architecture . 284

11.6 Interprocess Communication with ZeroMQ 285

11.7 Summary . 288

12 Managing Relational Databases 289

12.1 RDBMS, ORMs, and When to Use Them 289

12.2 Database Backends . 293

12.3 Streaming data with Flask and PostgreSQL 294

12.3.1 Writing the Data-Streaming Application 294

12.3.2 Building the Application 298

12.4 Dimitri Fontaine on Databases . 301

8 / 333

CONTENTS

13 Write Less, Code More 310

13.1 Using Six for Python 2 and 3 Support 310

13.1.1 Strings and Unicode . 312

13.1.2 Handling Python Modules Moves 312

13.1.3 The modernize Module . 313

13.2 Using Python Like Lisp to Make a Single Dispatcher 313

13.2.1 Creating Generic Methods in Lisp 314

13.2.2 Generic Methods in Python 316

13.3 Context Managers . 319

13.4 Less Boilerplate with attr . 323

Index 327

9 / 333

List of Figures

1.1 Python release timeline . 22

1.2 Standard package directory . 24

3.1 Explanation of some deprecated functions 78

6.1 Coverage of ceilometer.publisher 148

10.1 KCacheGrind example . 242

10.2 Using slice on memoryview objects 266

List of Examples

1.1 A pep8 run . 29
1.2 Running pep8 with --ignore . 30
2.1 The Zen of Python . 36
2.2 Hy module importer . 41
2.3 Hy module loader . 41
3.1 Building a basic Sphinx HTML document 67
3.2 Indicating the modules for autodoc to document 68
3.3 Code from sphinxcontrib.pecanwsme.rest.setup 73
3.4 An example of API change documentation for a car object 76
3.5 A documented change to the car object API using the warning module 79
3.6 Running python -W error and getting a deprecation error 80
3.7 An API change automated with debtcollector 81
4.1 Getting the time of the day . 89
4.2 Constructing a datetime object from a date 90
4.3 Using dateutil objects as tzinfo classes 91
4.4 Obtaining your local time zone . 92
4.5 Serializing a datetime object . 93
4.6 Using the iso8601 module to parse a ISO 8601 formatted timestamp 94
4.7 A confusing timestamp, occuring during the daylight saving time

crossover . 95
4.8 Disambiguating the ambiguous timestamp 96
5.1 setup.py using distutils . 99
5.2 setup.py using setuptools . 99
5.3 A setup.cfg file . 102

LIST OF EXAMPLES

5.4 setup.py using pbr . 103
5.5 Using setup.py sdist . 108
5.6 Getting list of entry points groups 114
5.7 Showing details of an entry point group 114
5.8 foobar/client.py . 116
5.9 foobar/server.py . 116
5.10 A console script generated by setuptools 117
5.11 Running pytimed . 120
5.12 Using stevedore to run a single extension from an entry point 122
6.1 A really simple test in test_true.py 127
6.2 A failing test in test_true.py . 128
6.3 Skipping tests . 131
6.4 Filtering tests run by name . 132
6.5 Teardown functionality . 136
6.6 Running a test using parameterized fixtures 138
6.7 Accessing the mock.Mock attribute 140
6.8 Creating methods on a mock.Mock object 140
6.9 Creating methods on a mock.Mock object with side effects 141
6.10 Checking method calls . 141
6.11 Using mock.patch . 142
6.12 Using mock.patch to test a set of behaviour 143
6.13 Using coverage with pytest . 146
6.14 Automatic virtual environment creation 151
6.15 A .travis.yml example file . 158
6.16 A .travis.yml example file with tox-travis 158
7.1 A decorator to organize functions in a dictionary 165
7.2 Adding a decorator to the factored code 166
7.3 Using more than one decorator with a single function 167
7.4 A decorated function loses its docstring and name attributes. 170
7.5 Source code of functools.update_wrapper 171

12 / 333

LIST OF EXAMPLES

7.6 Using functools.wraps . 172
7.7 Retrieving function arguments using inspect 173
7.8 Calling bound get_size . 176
7.9 Creating a static method as part of a class 177
7.10 A class method is bound to its class 178
7.11 Calling an abstract method . 180
7.12 Implementing an abstract method using abc 181
7.13 Using a subclass to extend the signature of the abstract method of its

parent . 182
7.14 Using class method decorator with an abstract method 183
7.15 Using an implementation in an abstract method 184
7.16 The super function is a constructor that instantiates a super object. . 186
8.1 A non-pure function . 191
8.2 A pure function . 191
8.3 Creating a generator . 193
8.4 yield returning a value . 195
8.5 Checking whether a function is a generator 197
8.6 Source code of inspect.isgeneratorfunction 197
8.7 map usage in Python 3 . 201
8.8 filter usage in Python 3 . 201
8.9 Equivalent of filter using list comprehension 202
8.10 Returning a default value when the condition is not met 206
8.11 Finding the first item in a list that satisfies a condition 207
8.12 Using key without lambda . 208
8.13 Using the operator module with itertools.groupby 211
9.1 Parsing Python code to AST . 214
9.2 The AST of the assign command in Python 214
9.3 Compiling a Python AST . 215
9.4 Hello world using Python AST . 217
9.5 Walking a tree with NodeTransformer to alter a node 219

13 / 333

LIST OF EXAMPLES

9.6 Omitting and including @staticmethod 221
9.7 Registering new extensions for flake8 222
9.8 Template for flake8 AST check 223
9.9 Ignoring statements that are not class definitions 223
9.10 Ignoring statements that are not function definitions 224
9.11 Checking for the static decorator 224
9.12 Checking the method for argumen 225
9.13 Checking the method for the self argument 226
9.14 Interacting with the Hy interpreter 229
9.15 Mapping a function definition from Python 229
9.16 Defining a class with defclass . 229
9.17 Importing regular Python modules 230
9.18 Using cond instead of if/elif/else 230
10.1 Adding an entry in a dictionary of sets 238
10.2 Using the cProfile module . 241
10.3 Using KCacheGrind to visualize Python profiling data 242
10.4 Disassembling Python code . 243
10.5 Disassembling functions that concatenate strings 244
10.6 Disassembling a function defined in a function 246
10.7 Disassembling a closure . 247
10.8 Using bisect to find a needle in a haystack 248
10.9 Inserting an item in a sorted list . 249
10.10A SortedList implementation . 249
10.11How attributes are stored internally in a Python object 252
10.12Memory profiling with objects . 253
10.13Extract of CPython Objects/typeobject.c code 254
10.14A class declaration using __slots__ 255
10.15Memory usage of objects using __slots__ 256
10.16Declaring a class using namedtuple 257
10.17Memory usage of a class built from collections.namedtuple 258

14 / 333

LIST OF EXAMPLES

10.18A basic memoization . 259
10.19Using functools.lru_cache . 260
10.20Writing a file with random data . 263
10.21Running memory profiler . 264
10.22Using memoryview . 265
10.23Writing random data to a file, using less memory 266
10.24Running memory profiler with the optimized version 266
10.25Reading data from a socket . 267
10.26Reading data from a socket using memoryview฀ ฀ 268
10.27Reading data from a file into a bytearray 269
10.28Reading data from a file into a bytearray at a specified location . . . 269
11.1 Result of time python worker.py . 278
11.2 Using multiprocessing for concurrent activity 278
11.3 Result of time python worker.py . 279
11.4 Event-driven program that listens for and processes connections . . 281
11.5 Retrieving web pages concurrently with aiohttp 283
12.1 Detecting and excluding duplicate messages with an ORM 291
12.2 SQL table schema for storing messages 294
12.3 The notify_on_insert function . 295
12.4 The trigger for notify_on_insert . 296
12.5 Receiving notifications in Python 296
12.6 Flask streamer application . 298
13.1 Using six.moves to use ConfigParser() with Python 2 and Python 3 . 313
13.2 Defining generic methods in Lisp, independent of classes 315
13.3 Calling a method with an unavailable signature 316
13.4 A Python implementation of our drum kit 317
13.5 Simple implementation of a context object 319
13.6 Simplest usage of contextlib.contextmanager 320
13.7 Defining a context manager yielding a value 321
13.8 Handling exceptions in a context manager 322

15 / 333

LIST OF EXAMPLES

13.9 Opening two files at the same time to copy content 323
13.10Opening two files at the same time with one with statement 323
13.11Common class initialization boilerplate 323
13.12Declaring a class with attr . 324
13.13Using attr.ib() with its converter argument 325
13.14Using frozen=True with attr . 326

16 / 333

Introduction

If you’re reading this, the odds are good you’ve been working with Python for
some time already. Maybe you learned it using some tutorials, delved into some
existing programs, or started from scratch. Whatever the case, you’ve hacked your
way into learning it. That’s exactly how I got familiar with Python up until I started
working on big open source projects 10 years ago.

It is easy to think that you know and understand Python once you’ve written
your first program. The language is that simple to grasp. However, it takes years to
master it and to develop a deep comprehension of its advantages and shortcomings.

When I started Python, I built my own Python libraries and applications on
a “garage project” scale. Things changed once I started working with hundreds of
developers on software that thousands of users rely on. For example, the OpenStack
platform — a project I contribute to — represents over 9 million lines of Python
code, which collectively needs to be concise, efficient, and scalable to the needs of
whatever cloud computing application its users require. When you have a project
of this size, things like testing and documentation absolutely require automation, or
else they won’t get done at all.

I thought I knew a lot about Python before working on projects of this scale —
a scale I could hardly imagine when I started out — but I’ve learned a lot more. I’ve
also had the opportunity to meet some of the best Python hackers in the industry
and learn from them. They’ve taught me everything from general architecture and
design principles to various helpful tips and tricks. Through this book, I hope to share
the most important things I’ve learned so that you can build better Python programs
— and build them more efficiently, too!

WHO SHOULD READ THIS BOOK AND WHY

The first version of this book, The Hacker’s Guide to Python, came out in 2014.
Now Serious Python is the fourth edition, with updated and entirely new contents. I
hope you enjoy it!

Who Should Read This Book and Why

This book is intended for Python coders and developers who want to take their
Python skills to the next level.

In it, you’ll findmethods and advice that will help you get themost out of Python
and build future-proof programs. If you’re already working on a project, you’ll be
able to apply the techniques discussed right away to improve your current code. If
you’re starting your first project, you’ll be able to create a blueprint with the best
practice.

I’ll introduce you to some Python internals to give you a better understanding
of how to write efficient code. You will gain a greater insight into the inner workings
of the language that will help you understand problems or inefficiencies.

The book also provides applicable battle-tested solutions to problems such as
testing, porting, and scaling Python code, applications, and libraries. This will help
you avoid making the mistakes that others have made and discover strategies that
will help you maintain your software in the long run.

About this Book

This book is not necessarily designed to be read from front to back. You should feel
free to skip to sections that interest you or are relevant to your work. Throughout the
book, you’ll find a wide range of advice and practical tips. Here’s a quick breakdown
of what each chapter contains.

18 / 333

ABOUT THIS BOOK

Chapter 1 will provide guidance about what to consider before you undertake
a project, with advice on structuring your project, numbering versions, setting up
automated error checking, and more.

Chapter 2 will look at Python modules, libraries, and frameworks and talk a
little about how they work under the hood. You’ll find guidance on using the sys

module, getting more from the pip package manager, choosing the best framework
for you, and using standard and external libraries. There’s also an interview with
Doug Hellmann.

Chapter 3 gives advice on documenting your projects andmanaging your APIs
as your project evolves even after publication. You’ll get specific guidance on using
Sphinx to automate certain documentation tasks. Here you’ll find an interview with
Christophe de Vienne.

Chapter 4 covers the age-old issue of time zones and how best to handle them
in your programs using datetime objects and tzinfo objects.

Chapter 5will help you get your software to users with guidance on distribution.
You’ll learn about packaging, distributions standards, the distutils and setuptools

libraries, and how to easily discover dynamic features in a package using entry points.
Nick Coghlan is interviewed.

Chapter 6 advises you on unit testing with best-practice tips and specific tuto-
rials on automating unit tests with pytest. You’ll also look at using virtual environ-
ments to increase the isolation of your tests. The interview is with Robert Collins.

Chapter 7 digs into methods and decorators. This is a look at using Python
for functional programming, with advice on how and when to use decorators and
how to create decorators for decorators. We’ll also dig into static, class, and abstract
methods and how to mix the three for a more robust program.

Chapter 8 will show you more functional programming tricks you can imple-
ment in Python. This chapter discusses generators, list comprehensions, functional
functions and common tools for implementing them, and the useful functools li-

19 / 333

ABOUT THIS BOOK

brary.

Chapter 9 peeks under the hood of the language itself and discusses the abstract
syntax tree (AST) that is the inner structure of Python. We’ll also look at extending
flake8 to work with the AST to introduce more sophisticated automatic checks into
your programs. The chapter concludes with an interview with Paul Tagliamonte.

Chapter 10 is a guide to optimizing performance by using appropriate data
structures, defining functions efficiently, and applying dynamic performance analysis
to identify bottlenecks in your code. We’ll also touch on memoization and reducing
waste in data copies. You’ll find an interview with Victor Stinner.

Chapter 11 tackles the difficult subject of multithreading, including how and
when to use multithreading as opposed to multiprocessing and whether to use event-
oriented or service-oriented architecture to create scalable programs.

In Chapter 12, we’ll tackle relational databases. We’ll take a look at how they
work and how to use PostgreSQL to effectively manage and stream data. Dimitri
Fontaine is interviewed.

Finally, in Chapter 13, you’ll find sound advice on a range of topics: making
your code compatible with both Python 2 and 3, creating functional Lisp-like code,
using context managers, and reducing repetition with the attr library.

20 / 333

CHAPTER 1

Starting Your Project

In this first chapter, we’ll look at a few aspects of starting out a project and what
you should think about before you begin, such as which Python version to use, how
to structure your modules, how to effectively number software versions, and how to
ensure best coding practices with automatic error checking.

1.1 Versions of Python

Before beginning a project, you’ll need to decide what version(s) of Python it will
support. This is not as simple a decision as it may seem.

It’s no secret that Python supports several versions at the same time. Eachminor
version of the interpreter gets bug-fix support for 18 months and security support for
5 years. For example, Python 3.7, released on June 27, 2018, will be supported until
Python 3.8 is released, around October 2019 (15 months later). Around December
2019, a last bug-fix release of Python 3.7 will occur, and everyone will be expected
to switch to Python 3.8. Each new version of Python introduces new features and
deprecates old ones. Figure 1.1 illustrates this timeline.

1.1. VERSIONS OF PYTHON

Figure 1.1: Python release timeline

On top of that, we should take into consideration the Python 2 versus Python 3
problem. People working with (very) old platforms may still require Python 2 support
because Python 3 has not been made available on those platforms, but the rule of
thumb is to forget Python 2 if you can.

Here is a quick way to figure out which version you need:

• Versions 2.6 and older are now obsolete, so I do not recommend you worry about
supporting them at all. If you do intend to support these older versions for what-
ever reason, be warned that you’ll have a hard time ensuring that your program
supports Python 3.x as well. Having said that, you might still run into Python 2.6
on some older systems — if that’s the case, sorry!

• Version 2.7 is and will remain the last version of Python 2.x. Every system is ba-
sically running or able to run Python 3 one way or the other nowadays, so unless
you’re doing archeology, you shouldn’t need to worry about supporting Python 2.7
in new programs. Python 2.7 will cease to be supported after the year 2020, so the
last thing you want to do is build a new software based on it.

• Versions 3.7 is themost recent version of the Python 3 branch as of this writing, and
that’s the one that you should target. Most recent operating systems ship at least
3.6, so in the case where you’d target those, you can make sure your application
also work with 3.7.

22 / 333

1.2. LAYING OUT YOUR PROJECT

Techniques for writing programs that support both Python 2.7 and 3.x will be
discussed in Section 13.1.

Finally, note that this book has been written with Python 3 in mind.

1.2 Laying Out Your Project

Starting a new project is always a bit of a puzzle. You can’t be sure how your project
will be structured, so you might not know how to organize your files. However, once
you have a proper understanding of best practices, you’ll understand which basic
structure to start with. Here I’ll give some tips on dos and don’ts for laying out your
project.

1.2.1 What to Do

First, consider your project structure, which should be fairly simple. Use packages
and hierarchy wisely: a deep hierarchy can be a nightmare to navigate, while a flat
hierarchy tends to become bloated.

Then, avoid making the common mistake of storing unit tests outside the pack-
age directory. These tests should definitely be included in a subpackage of your
software so that they aren’t automatically installed as a tests top-level module by
setuptools (or some other packaging library) by accident. By placing them in a sub-
package, you ensure they can be installed and eventually used by other packages so
users can build their own unit tests.

Figure 1.2 illustrates what a standard file hierarchy should look like.

23 / 333

1.2. LAYING OUT YOUR PROJECT

Figure 1.2: Standard package directory

The standard name for a Python installation script is setup.py. It comes with
its companion setup.cfg, which should contain the installation script configuration
details. When run, setup.py will install your package using the Python distribution
utilities.

You can also provide important information to users in README.rst (or README.
txt, or whatever filename suits your fancy). Finally, the docs directory should contain

24 / 333

1.2. LAYING OUT YOUR PROJECT

the package’s documentation in reStructuredText format, which will be consumed by
Sphinx (see Section 3.2).

Packages will often have to provide extra data for the software to use, such as
images, shell scripts, and so forth. Unfortunately, there’s no universally accepted
standard for where these files should be stored, so you should just put them wherever
makes the most sense for your project depending on their functions. For example,
web application templates could go in a templates directory in your package root
directory.

The following top-level directories also frequently appear:

• etc for sample configuration files

• tools for shell scripts or related tools

• bin for binary scripts you’ve written that will be installed by setup.py

1.2.2 What Not to Do

There is a particular design issue that I often encounter in project structures that
have not been fully thought out: some developers will create files or modules based
on the type of code they will store. For example, they might create functions.py or
exceptions.py files. This is a terrible approach and doesn’t help any developer when
navigating the code. When reading a code base, the developer expects a functional
area of a program to be confined in a particular file. The code organization doesn’t
benefit from this approach, which forces readers to jump between files for no good
reason.

Organize your code based on features, not on types.

It is also a bad idea to create a module directory that contains only an __init__.

py file, because it’s unnecessary nesting. For example, you shouldn’t create a directory
named hooks with single file named hooks/__init__.py in it, where hooks.py would

25 / 333

1.3. VERSION NUMBERING

have been enough. If you create a directory, it should contain several other Python
files that belong to the category the directory represents. Building a deep hierarchy
unnecessarily is confusing.

You should also be very careful about the code that you put in the __init__.

py file: this file will be called and executed the first time that a module contained
in the directory is loaded. Placing the wrong things in your __init__.py can have
unwanted side effects. In fact, __init__.py files should be empty most of the time,
unless you know what you’re doing. Don’t try to remove __init__.py files altogether
though, or you won’t be able to import your Python module at all: Python requires
an __init__.py file to be present for the directory to be considered a submodule.

1.3 Version Numbering

Software versions need to be stamped so users know which is the more recent version.
For every project, users must be able to organize the timeline of the evolving code.

There is an infinite number of ways to organize your version numbers. How-
ever, PEP 440 introduces a version format that every Python package, and ideally
every application, should follow so that other programs and packages can easily and
reliably identify which versions of your package they require.

PEP 440 defines the following regular expression format for version numbering:

1 N[.N]+[{a|b|c|rc}N][.postN][.devN]

This allows for standard numbering such as 1.2 or 1.2.3. There are a few
further details to note:

• Version 1.2 is equivalent to 1.2.0, 1.3.4 is equivalent to 1.3.4.0, and so forth.

• Versions matching N[.N]+ are considered final releases.

26 / 333

1.3. VERSION NUMBERING

• Date-based versions such as 2013.06.22 are considered invalid. Automated tools
designed to detect PEP 440-format version numbers will (or should) raise an error
if they detect a version number greater than or equal to 1980.

Final components can also use the following format:

• N[.N]+aN (for example, 1.2a1) denotes an alpha release; this is a version that might
be unstable and missing features.

• N[.N]+bN (for example. 2.3.1b2) denotes a beta release, a version that might be
feature-complete but still buggy.

• N[.N]+cN or N[.N]+rcN (for example, 0.4rc1) denotes a (release) candidate. This is
a version that might be released as the final product unless significant bugs emerge.
While the rc and c suffixes have the same meaning, if both are used, rc releases
are considered to be newer than c releases.

The following suffixes can also be used:

• .postN (for example,1.4.post2) indicates a post release. Post releases are typically
used to address minor errors in the publication process, such as mistakes in re-
lease notes. You shouldn’t use .postN when releasing a bug-fix version; instead but
should increment the minor version number.

• .devN (for example, 2.3.4.dev3) indicates a developmental release. It indicates a
prerelease of the version that it qualifies: for example, 2.3.4.dev3 indicates the
third developmental version of the 2.3.4 release, prior to any alpha, beta, candi-
date or final release. This suffix is discouraged because it is harder for humans to
parse.

This scheme should be sufficient for most common use cases.

27 / 333

1.4. CODING STYLE & AUTOMATED CHECKS

Note
You might have heard of Semantic Versioning, which provides its
own guidelines for version numbering. This specification partially
overlaps with PEP 440, but unfortunately, they’re not entirely com-
patible. For example, Semantic Versioning’s recommendation for
prerelease versioning uses a scheme such as 1.0.0-alpha+001 that is
not compliant with PEP 440.

Many distributed version control system (DVCS) platforms, such as Git andMercurial,
are able to generate version numbers using an identifying hash (for Git, refer to git

describe). Unfortunately, this system isn’t compatible with the scheme defined by
PEP 440: for one thing, identifying hashes aren’t orderable.

1.4 Coding Style & Automated Checks

Coding style is a touchy subject, but one we should talk about before we dive further
into Python. Unlike many programming languages, Python uses indentation to de-
fine blocks. While this offers a simple solution to the age-old question “Where should
I put my braces?” it introduces a new question: “How should I indent?”

That was one of the first questions raised in the community, so the Python folks,
in their vast wisdom, came up with the PEP 8: Style Guide for Python Code.

This document defines the standard style for writing Python code. The list of
guidelines boils down to:

• Use four spaces per indentation level.

• Limit all lines to a maximum of 79 characters.

• Separate top-level function and class definitions with two blank lines.

28 / 333

1.4. CODING STYLE & AUTOMATED CHECKS

• Encode files using ASCII or UTF-8.

• One module import per import statement and per line. Place import statements at
the top of the file, after comments and docstrings, grouped first by standard, then
by third party, and finally by local library imports.

• Do not use extraneous whitespaces between parentheses, brackets, or braces, or
before commas.

• Write class names in camel case (e..g, CamelCase), suffix exceptions with Error (if
applicable), and name functions in lowercase with words and underscores (e.g.,
separated_by_underscores). Use a leading underscore for _private attributes or
methods.

These guidelines really aren’t hard to follow, and they make a lot of sense. Most
Python programmers have no trouble sticking to them as they write code.

However, errare humanum est and it’s still a pain to look through your code tomake
sure it fits the PEP 8 guidelines. Luckily, there’s a pep8 tool that can automatically
check any Python file you send its way. Install pep8 with pip, and then you can use it
on a file like so:

Example 1.1 A pep8 run

1 $ pep8 hello.py

2 hello.py:4:1: E302 expected 2 blank lines, found 1

3 $ echo $?

4 1

Here I use pep8 on my file hello.py, and the output indicates which lines and
columns do not conform to PEP 8 and reports each issue with a code— here it’s line
4 and column 1. Violations ofMUST statements in the specification are reported as
errors, and their error codes start with an E. Minor issues are reported as warnings,
and their error codes start with a W. The three-digit code following that first letter
indicates the exact kind of error or warning.

29 / 333

1.4. CODING STYLE & AUTOMATED CHECKS

The hundreds digit tells you the general category of an error code: for example,
errors starting with E2 indicate issues with whitespace, errors starting with E3 indicate
issues with blank lines, and warnings starting with W6 indicate deprecated features
being used. These codes are all listed in the pep8 documentation.

1.4.1 Tools to Catch Style Errors

The community still debates whether validating against PEP 8 code, which is not
part of the standard library, is good practice. My advice is to consider running a
PEP 8 validation tool against your source code on a regular basis. You can do this
easily by integrating it into your continuous integration system. While this approach
may seem a bit extreme, it’s a good way to ensure that you continue to respect the
PEP 8 guidelines in the long term. We’ll discuss in “Using virtualenv with tox” in
Section 6.3 how you can integrate pep8 with tox to automate these checks.

Most open source projects enforce PEP 8 conformance through automatic checks.
Using these automatic checks from the very beginning of the project might frustrate
newcomers, but it also ensures that the codebase always looks the same in every part
of the project. This is very important for a project of any size where there are mul-
tiple developers with differing opinions on, for example, whitespace ordering. You
know what I mean.

It’s also possible to set your code to ignore certain kinds of errors and warnings
by using the --ignore option, like so:

Example 1.2 Running pep8 with --ignore

1 $ pep8 --ignore=E3 hello.py

2 $ echo $?

3 0

This will ignore any code E3 errors insidemy hello.py file. The --ignore option
allows you to effectively ignore parts of the PEP 8 specification that you don’t want

30 / 333

1.4. CODING STYLE & AUTOMATED CHECKS

to follow. If you’re running pep8 on an existing codebase, it also allows you to ignore
certain kinds of problems so you can focus on fixing issues one category at a time.

Note
If you write C code for Python (e.g. modules), the PEP 7 standard
describes the coding style that you should follow.

1.4.2 Tools to Catch Coding Errors

Python also has tools that check for actual coding errors rather than style errors.
Here are some notable examples:

• pyflakes: extendable via plugins.

• pylint: Checks PEP 8 conformance while performing code error checks by default;
can be extended via plugin.

These tools all make use of static analysis — that is, they parse the code and
analyze it rather than running it outright.

If you choose to use Pyflakes, note that it doesn’t check PEP 8 conformance on
its own, so you’d need the second pep8 tool to cover both.

To simplify things, Python has a project named flake8 that combines pyflakes
and pep8 into a single command. It also adds some new fancy features: for example,
it can skip checks on lines containing #noqa and is extensible via plugins.

There are a large number of plugins available for flake8 that you can use out the
box. For example, installing flake8-import-order (with pip install flake8-imp

ort-order) will extend flake8 so that it also checks whether your import statements
are sorted alphabetically in your source code. Yes, some projects want that.

31 / 333

1.5. INTERVIEW WITH JOSHUA HARLOW

In most open source projects, flake8 is heavily used for code style verification.
Some large open source projects have even written their own plugins for flake8,
adding checks for errors such as odd usage of except, Python 2/3 portability issues,
import style, dangerous string formatting, possible localization issues, and more.

If you’re starting a new project, I strongly recommend that you use one of these
tools for automatic checking of your code quality and style. If you already have a
codebase that didn’t implement automatic code checking, a good approach is to run
your tool of choice with most of the warnings disabled and fix issues one category at
a time.

Though none of these tools may be a perfect fit for your project or your prefer-
ences, flake8 is a good way to improve the quality of your code and make it more
durable.

Tip
Many text editors, including the famous GNU Emacs and vim, have
plugins available (such as Flycheck that can run tools such as pep8

or flake8 directly in your code buffer, interactively highlighting any
part of your code that isn’t PEP 8 compliant. This is a handy way to
fix most style errors as you write your code.

We’ll talk about extending this toolset in Section 9.3 with our own plugin to
verify correct method declaration.

1.5 Interview with Joshua Harlow

Joshua Harlow is a Python developer. He was one of the technical leads on the
OpenStack team at Yahoo! between 2012 and 2016 and now works at GoDaddy.
Josh is the author of several Python libraries such as Taskflow, automaton, and Zake.

32 / 333

1.5. INTERVIEW WITH JOSHUA HARLOW

“

What got you into using Python?

I started programming in Python 2.3 or 2.4 back in about 2004 dur-
ing an internship at the IBM near Poughkeepsie, New York (most of
my relatives and family are from upstate NY, shout out to them!). I
forget exactly what I was doing there, but it involved wxPython and
some Python code that they were working on to automate some sys-
tem.

After that internship I returned to school, went on to graduate school
at theRochester Institute of Technology (RIT), and ended upworking
at Yahoo!.

I eventually ended up in the CTO team, where I and a few others
were tasked with figuring out which open source cloud platform to
use. We landed on OpenStack, which is written almost entirely in
Python.

What do you love and hate about the Python language?

Some of the things I love (not a comprehensive listing):

• Its simplicity — Python it really easy for beginners to engage with
and for experienced developers to stay engaged with.

• Style checking—reading code you wrote later on is a big part of
developing software and having consistency that can be enforced
by tools such as flake8, pep8, and Pylint really helps.

33 / 333

1.5. INTERVIEW WITH JOSHUA HARLOW

• The ability to pick and choose programming styles and mix them
up as you see fit.

Some of the things I dislike (not a comprehensive listing):

• The somewhat painful Python 2 to 3 transition (version 3.6 has
paved over most of the issues here).

• Lambdas are too simplistic and should be made more powerful.

• The lack of a decent package installer— I feel pip needs somework,
like developing a real dependency resolver.

• The global interpreter lock (GIL) and the need for it. It makes me
sad.

• The lack of native support formultithreading— currently you need
the addition of an explicit asyncio model.

• The fracturing of the Python community; this is mainly around the
split between CPython and PyPy (and other variants).

You work on debtcollector, a Python module for managing
deprecation warnings. How is the process of starting a new
library?

The simplicity mentioned above makes it really easy to get a new li-
brary going and to publish it so others can use it. Since that code
came out of one of the other libraries that I work on (taskflow) it
was relatively easy to transplant and extend that code without having
to worry about the API being badly designed. I am very glad oth-
ers (inside the OpenStack community or outside of it) have found a
need/use for it, and I hope that library grows to accommodate more
styles of deprecation patterns that other libraries (and applications?)
find useful.

What is Python missing, in your opinion?

34 / 333

1.5. INTERVIEW WITH JOSHUA HARLOW

Python could perform better under just-in-time (JIT) compilation.
Most newer languages being created (such as Rust, Node.js using the
Chrome V8 JavaScript engine, and others) have many of Python’s
capabilities but are also JIT compiled. It would really be great if the
default CPython could also be JIT compiled so that Python could
compete with these newer languages on performance.

Python also really needs a strong set of concurrency patterns; not
just the low level asyncio and threading styles of patterns, but higher-
level concepts that help make applications that work performantly at
larger scale. The Python library goless does port over some of the
concepts from Go, which does provide a built-in concurrency model.
I believe these higher-level patterns need to be available as first-class
patterns that are built in to the standard library and maintained so
that developers can use themwhere they see fit. Without these, I don’t
see how Python can compete with other languages that do provide
them.

Until next time, keep coding and be happy!

”

35 / 333

CHAPTER 2

Modules, Libraries and
Frameworks

Modules are an essential part of what makes Python extensible. Without them,
Python would just be a language built around a monolithic interpreter; it wouldn’t
have flourish within a giant ecosystem that allows developers to build applications
quickly and simply by combining extensions. In this chapter, I’ll introduce you to
some of the features that make Python modules great, from the built-in modules you
need to know to externally managed frameworks.

2.1 The Import System

To usemodules and libraries in your programs, you have to import them using the imp
ort keyword. As an example, Example 2.1 imports the all-important Zen of Python
guidelines:.

Example 2.1 The Zen of Python

2.1. THE IMPORT SYSTEM

1 >>> import this

2 The Zen of Python, by Tim Peters

3

4 Beautiful is better than ugly.

5 Explicit is better than implicit.

6 Simple is better than complex.

7 Complex is better than complicated.

8 Flat is better than nested.

9 Sparse is better than dense.

10 Readability counts.

11 Special cases aren't special enough to break the rules.

12 Although practicality beats purity.

13 Errors should never pass silently.

14 Unless explicitly silenced.

15 In the face of ambiguity, refuse the temptation to guess.

16 There should be one-- and preferably only one --obvious way to do it.

17 Although that way may not be obvious at first unless you're Dutch.

18 Now is better than never.

19 Although never is often better than *right* now.

20 If the implementation is hard to explain, it's a bad idea.

21 If the implementation is easy to explain, it may be a good idea.

22 Namespaces are one honking great idea -- let's do more of those!

The import system is quite complex, and I’m assuming you already know the ba-
sics, so here I’ll show you some of the internals of this system, including the workings
of the sys module, how to change or add import paths, and using custom importers.

First, you need to know that the import keyword is actually a wrapper around
a function named __import__. Here is a familiar way of importing a module:

1 >>> import itertools

2 >>> itertools

3 <module 'itertools' from '/usr/…/>

This is precisely equivalent to this method:

1 >>> itertools = __import__(”itertools”)

37 / 333

2.1. THE IMPORT SYSTEM

2 >>> itertools

3 <module 'itertools' from '/usr/…/>

You can also imitate the as keyword of import, as those two equivalent ways of
importing show:

1 >>> import itertools as it

2 >>> it

3 <module 'itertools' from '/usr/…/>

And here’s the second example:
1 >>> it = __import__(”itertools”)

2 >>> it

3 <module 'itertools' from '/usr/…/>

The __import__ function is extremely useful to know, as in some (corner) cases,
you might want to import a module whose name is unknown beforehand, like so:

1 >>> random = __import__(”RANDOM”.lower())

2 >>> random

3 <module 'random' from '/usr/…/>

Don’t forget that module, once imported, are essentially object whose attributes
(classes, functions, variables, etc) are objects.

2.1.1 The sys Module

The sysmodule provides access to variables and functions related to Python itself and
the operating system it is running on. This module also contains a lot of information
about Python’s import system.

First of all, you can retrieve the list of modules currently imported using the
sys.modules variable. The sys.modules variable is a dictionary whose key is the
module name you want to inspect and whose returned value is the module object.
For example, once the os module is imported, we can retrieve it by entering:

38 / 333

2.1. THE IMPORT SYSTEM

1 >>> import sys

2 >>> import os

3 >>> sys.modules['os']

4 <module 'os' from '/usr/lib/python2.7/os.pyc'>

The sys.modules variable is a standard Python dictionary that contains all loaded
modules. That means that calling sys.modules.keys(), for example, will return the
complete list of the names of loaded modules.

You can also retrieve the list of modules that are built in by using the sys.buil

tin_module_names variable. The built-in modules compiled to your interpreter can
vary depending on what compilation options were passed to the Python build system.

2.1.2 Import Paths

When importing modules, Python relies on a list of paths to know where to look for
the module. This list is stored in the sys.path variable. To check which paths your
interpreter will search for modules, just enter sys.path.

You can change this list, adding or removing paths as necessary, or even mod-
ify the PYTHONPATH environment variable to add paths, without writing Python code
at all. Adding paths to the sys.path variable can be useful if you want to install
Python modules to non-standard locations, such as a test environment. In normal
operations, however, it should not be necessary to change the path variable. The fol-
lowing approaches are almost equivalent – almost because the path will not be placed
at the same level in the list; this difference may not matter, depending on your use
case:

1 >>> import sys

2 >>> sys.path.append('/foo/bar')

This would be (almost) the same as:

39 / 333

2.1. THE IMPORT SYSTEM

1 $ PYTHONPATH=/foo/bar python

2 >>> import sys

3 >>> '/foo/bar' in sys.path

4 True

It’s important to note that the list will be iterated over to find the requested
module, so the order of the paths in sys.path is important. It’s useful to put the
path most likely to contain the modules you are importing early in the list to speed
up search time. Doing so also ensures that if two modules with the same name are
available, the first match will be picked.

This last property is especially important because one common mistake is to
shadow Python built-in modules with your own. Your current directory is searched
before the Python Standard Library directory. Thatmeans that if you decide to name
one of your scripts random.py and then try using import random, the file from your
current directory will be imported and not the Python module.

2.1.3 Custom Importers

You can also extend the import mechanism using custom importers. This is the
technique that the Lisp-Python dialect Hy uses to teach Python how to import files
other than standard .py or .pyc files. Hy is a Lisp implementation on top of Python,
discussed later in Section 9.4.

The import hook mechanism, as this technique is called, is defined by PEP 302.
It allows you to extend the standard import mechanism, which in turn can allow you
to modify how Python imports modules and build your own system of import. For
example, you could write an extension that imports modules from a database over
the network, or that would do some sanity checking before importing any module.
Python offers two different but related ways to broaden the import system: the meta
path finders, for use with sys.meta_path, and the path entry finders for use with sys.

path_hooks.

40 / 333

2.1. THE IMPORT SYSTEM

2.1.4 Meta Path Finders

The meta path finder is an object that will allow you to load custom objects as well
as the regular and standard .py files that Python knows how to load. A meta path
finder object must expose a find_module(fullname, path=None)method that returns
a loader object. The loader object must also have a load_module(fullname)method
responsible for loading the module from a source file. To illustrate, Example 2.2
shows how Hy uses a custom meta path finder to enable Python to import source
files ending with .hy instead of .py.

Example 2.2 Hy module importer

1 class MetaImporter(object):

2 def find_on_path(self, fullname):

3 fls = [”%s/__init__.hy”, ”%s.hy”]

4 dirpath = ”/”.join(fullname.split(”.”))

5

6 for pth in sys.path:

7 pth = os.path.abspath(pth)

8 for fp in fls:

9 composed_path = fp % (”%s/%s” % (pth, dirpath))

10 if os.path.exists(composed_path):

11 return composed_path

12

13 def find_module(self, fullname, path=None):

14 path = self.find_on_path(fullname)

15 if path:

16 return MetaLoader(path)

17

18 sys.meta_path.append(MetaImporter())

Once Python has determined that the path is valid and that it points to amodule,
a MetaLoader object is returned as shown in Example 2.3.

Example 2.3 Hy module loader

41 / 333

2.1. THE IMPORT SYSTEM

1 class MetaLoader(object):

2 def __init__(self, path):

3 self.path = path

4

5 def is_package(self, fullname):

6 dirpath = ”/”.join(fullname.split(”.”))

7 for pth in sys.path:

8 pth = os.path.abspath(pth)

9 composed_path = ”%s/%s/__init__.hy” % (pth, dirpath)

10 if os.path.exists(composed_path):

11 return True

12 return False

13

14 def load_module(self, fullname):

15 if fullname in sys.modules:

16 return sys.modules[fullname]

17

18 if not self.path:

19 return

20

21 sys.modules[fullname] = None

22 mod = import_file_to_module(fullname,

23 self.path) ②1

24

25 ispkg = self.is_package(fullname)

26

27 mod.__file__ = self.path

28 mod.__loader__ = self

29 mod.__name__ = fullname

30

31 if ispkg:

32 mod.__path__ = []

33 mod.__package__ = fullname

34 else:

35 mod.__package__ = fullname.rpartition('.')[0]

36

42 / 333

2.2. USEFUL STANDARD LIBRARIES

37 sys.modules[fullname] = mod

38 return mod

②1 import_file_to_module reads aHy source file, compiles it to Python code, and
returns a Python module object.

This loader is pretty straightforward actually: once the .hy file is found, it’s
passed to this loader, which compiles the file if necessary, registers it, sets some at-
tributes, and then returns it to the Python interpreter.

The uprefixmodule is another good example of this feature in action. Python 3.0
through 3.2 didn’t support the u prefix for denoting Unicode strings that was featured
in Python 2; the uprefix module ensures compatibility between Python versions 2
and 3 by removing the u prefix from strings before compilation.

2.2 Useful Standard Libraries

Python comes with a huge standard library packed with tools and features for almost
any purpose you can think of. Newcomers to Python who are used to having to write
their own functions for basic tasks are often shocked to find that the language itself
ships with so much functionality built in and ready for use.

Whenever you’re tempted to write your own function to handle a simple task,
first stop and look through the standard library. In fact, My advice is to skim through
the whole thing at least once before you begin working with Python so that next time
you need a function, you have an idea of whether it already exists in the standard
library. We’ll talk about some of these modules in later sections, such as functools
and itertools, in later chapters, but here are a few of the standard modules that
you’ll definitely find useful:

• atexit allows you to register functions to call when your program exits.

43 / 333

2.2. USEFUL STANDARD LIBRARIES

• argparse provides functions for parsing command line arguments.

• bisect provides bisection algorithms for sorting lists (see Section 10.4).

• calendar provides a number of date-related functions.

• codecs provides functions for encoding and decoding data.

• collections provides a variety of useful data structures.

• copy provides functions for copying data.

• csv provides functions for reading and writing CSV files.

• datetime provides classes for handling dates and times.

• fnmatch provides functions for matching Unix-style filename patterns.

• concurrent provides asynchronous computation (native in Python 3, available for
Python 2 via PyPI).

• glob provides functions for matching Unix-style path patterns.

• io provides functions for handling I/O streams. It also contains StringIO which
allows you to treat strings as files.

• json provides functions for reading and writing data in JSON format.

• logging provides access to Python’s own built-in logging functionality.

• multiprocessing allows you to run multiple subprocesses from your application,
while providing an API that makes them look like threads.

• operator provides functions implementing the basic Python operators, which you
can use instead of having to write your own lambda expressions (see Section 8.4).

• os provides access to basic OS functions.

44 / 333

2.2. USEFUL STANDARD LIBRARIES

• random provides functions for generating pseudo-random numbers.

• re provides regular expression functionality.

• sched provides an event scheduler without using multi-threading.

• select provides access to the select() and poll() functions for creating event loops.

• shutil provides access to high-level file functions.

• signal provides functions for handling POSIX signals.

• tempfile provides functions for creating temporary files and directories.

• threading provides access to high-level threading functionality.

• urllib (and urllib2 and urlparse in Python 2.x) provides functions for handling
and parsing URLs.

• uuid allows you to generate UUIDs (Universally Unique Identifiers).

Use this list as a quick reference for what these useful libraries modules do. If
you can memorize even part of this list, all the better. The less time you have to
spend looking up library modules, the more time you can spend writing the code
you actually need.

Most of the standard library is written in Python, so there’s nothing stopping
you from looking at the source code of the modules and functions. When in doubt,
crack open the code and see what it does for yourself. Even if the documentation
has everything you need to know, there’s always a chance you could learn something
useful.

45 / 333

2.3. EXTERNAL LIBRARIES

2.3 External Libraries

Python’s “batteries included” philosophy is that, once you have Python installed, you
should have everything you need to build whatever you want. This is to prevent
the programming equivalent of unwrapping an awesome gift only to find out that
whoever gave it to you forgot to buy batteries for it.

Unfortunately, there’s no way the people behind Python can predict everything
you might want to make. And even if they could, most people wouldn’t want to deal
with a multi-gigabyte download, especially if they just wanted to write a quick script
for renaming files. So, even with all its extensive functionality, the Python Standard
Library doesn’t cover everything. Luckily, members of the Python community have
created external libraries.

The Python Standard Library is safe, well-charted territory: its modules are
heavily documented, and enough people use it on a regular basis that you can feel
assured that it won’t break messily when you give it a try – and in the unlikely event
that it does break, you can be confident someone will fix it in short order. External
libraries, on the other hand, are the parts of the map labeled ”here there be dragons”:
documentation may be sparse, functionality may be buggy, and updates may be spo-
radic or even nonexistent. Any serious project will likely need functionality that only
external libraries can provide, but you need to be mindful of the risks involved in
using them.

Here’s a tale of external library dangers from the trenches. OpenStack uses
SQLAlchemy – a database toolkit for Python. If you’re familiar with SQL, you
know that database schemas can change over time, so OpenStack also made use
of sqlalchemy-migrate to handle schema migration needs. And it worked… until it
didn’t. Bugs started piling up, and nothing was getting done about them. At this
time, OpenStack was also interested in supporting Python 3, but there was no sign
that sqlalchemy-migrate was moving toward Python 3 support. It was clear by that
point that sqlalchemy-migrate was effectively dead for our needs and we needed to

46 / 333

2.3. EXTERNAL LIBRARIES

switch to something else—our needs had outlived the capabilities of the external li-
brary. At the time of this writing, OpenStack projects are migrating towards using
alembic instead, a new SQL database migrations tool with Python 3 support. This is
happening not without some effort, but fortunately without much pain. OpenStack
also had to adopt sqlalchemy-migrate in the meantime so it would be able to fix
some of its bugs. That means even more work for the OpenStack community.

2.3.1 The External Libraries Safety Checklist

All of this builds up to one important question: how can you be sure you won’t fall
into this external libraries trap? Unfortunately, you can’t: programmers are people,
too, and there’s no way you can know for sure whether a library that’s zealously
maintained today will still be in good shape in a few months. However, using such
libraries may be worth the risk,; it’s just important to carefully assess your situation.
The following checklist helps when choosing whether to use an external library.

• Python 3 compatibility –There are still libraries that only supports only Python 2,
and that’s probably not a good sign of health nor a good option if you write your
code using Python 3.

• Active development – GitHub and Ohloh usually provide enough information
to determine whether a given library is still being worked on by its maintainers.

• Active maintenance – Even if a library is ”finished” (i.e. feature-complete), the
maintainers should be ensuring it remains bug-free. Check the project’s tracking
system to see how quickly the maintainers respond to bugs.

• Packaged with OS distributions – If a library is packaged with major Linux
distributions, that means other projects are depending on it – so if something goes
wrong, you won’t be the only one complaining. It’s also a good idea to check this if
you plan to release your software to the public: your code will be easier to distribute
if its dependencies are already installed on the end user’s machine.

47 / 333

2.3. EXTERNAL LIBRARIES

• API compatibility commitment – Nothing’s worse than having your software
suddenly break because a library it depends on changed its entire API. You might
want to check whether your chosen library has had anything like this happen in
the past.

• License – You need to make sure that the license is compatible with the software
you’re planning to write and that it allows you to do whatever you intend to do
with your code in terms of distribution, modification, and execution.

Applying this checklist to dependencies is also a good idea, though that could
turn out to be a huge undertaking. As a compromise, if you know your application
is going to depend heavily on a particular library, you should apply this checklist to
each of that library’s dependencies.

2.3.2 Protecting Your Code with an API Wrapper

No matter what libraries you end up using, you need to treat them as you would
any other tools: like useful devices that could potentially do some serious damage.
Therefore, for safety, libraries should be treated like any physical tool: kept in your
tool shed, away from your fragile valuables but available when you actually need
them.

No matter how useful an external library might be, you need to be wary of
letting it get its hooks into your actual source code. Otherwise, if something goes
wrong and you need to switch libraries, youmight have to rewrite huge swaths of your
program. A better idea is to write your own API— a wrapper that encapsulates your
external libraries and keeps them out of your source code. Your program never has
to know what external libraries it’s using;, only what functionality your API provides.
Then, if you need to use a different library, all you have to change is your wrapper: as
long as the new library provides the same functionality, you won’t have to touch the
rest of your codebase at all. There might be exceptions, but probably not many: most

48 / 333

2.4. PACKAGE INSTALLATION: GETTING MORE FROM PIP

libraries are designed to solve a tightly focused range of problems and can therefore
be easily isolated.

Later, in Section 5.5.3, we’ll also look at how you can use entry points to build
driver systems that will allow you to treat parts of your projects as modules you can
switch out at will.

2.4 Package Installation: GettingMore Frompip

The pip project offers a really simple way to handle package and external library
installations. It is actively developed, well maintained, and included with Python
starting at version 3.4. It can install or uninstall packages from the Python Packaging
Index (PyPI), a tarball, or aWheel archive (we’ll discuss these in Section 5.3).

Its usage is simple:

1 $ pip install --user voluptuous

2 Downloading/unpacking voluptuous

3 Downloading voluptuous-0.8.3.tar.gz

4 Storing download in cache at ./.cache/pip/https%3A%2F%2Fpypi.python. ←֓

org%2Fpackages%2Fsource%2Fv%2Fvoluptuous%2Fvoluptuous-0.8.3.tar. ←֓

gz

5 Running setup.py egg_info for package voluptuous

6

7 Requirement already satisfied (use --upgrade to upgrade): distribute ←֓

in /usr/lib/python2.7/dist-packages (from voluptuous)

8 Installing collected packages: voluptuous

9 Running setup.py install for voluptuous

10

11 Successfully installed voluptuous

12 Cleaning up...

By looking it up on the PyPI distribution index. PyPI is the Python Package Index
where anyone can upload a package for distribution and installation by others.

49 / 333

2.4. PACKAGE INSTALLATION: GETTING MORE FROM PIP

You can also provide a --user option that makes pip install the package in your
home directory. This avoids polluting your operating system directories with pack-
ages installed system-wide.

You can list the packages that are currently installed by using the pip freeze

command, like so:
1 $ pip freeze

2 Babel==1.3

3 Jinja2==2.7.1

4 commando=0.3.4

5 …

Uninstalling packages is also supported by pip, using the uninstall command:
1 $ pip uninstall pika-pool

2 Uninstalling pika-pool-0.1.3:

3 /usr/local/lib/python2.7/site-packages/pika_pool-0.1.3.dist-info/ ←֓

DESCRIPTION.rst

4 /usr/local/lib/python2.7/site-packages/pika_pool-0.1.3.dist-info/ ←֓

INSTALLER

5 /usr/local/lib/python2.7/site-packages/pika_pool-0.1.3.dist-info/ ←֓

METADATA

6 /usr/local/lib/python2.7/site-packages/pika_pool-0.1.3.dist-info/ ←֓

RECORD

7 /usr/local/lib/python2.7/site-packages/pika_pool-0.1.3.dist-info/ ←֓

WHEEL

8 /usr/local/lib/python2.7/site-packages/pika_pool-0.1.3.dist-info/ ←֓

metadata.json

9 /usr/local/lib/python2.7/site-packages/pika_pool-0.1.3.dist-info/ ←֓

top_level.txt

10 /usr/local/lib/python2.7/site-packages/pika_pool.py

11 /usr/local/lib/python2.7/site-packages/pika_pool.pyc

12 Proceed (y/n)? y

13 Successfully uninstalled pika-pool-0.1.3

One very valuable feature of pip is its ability to install a package without copying
the package’s file. The typical use case for this feature is when you’re actively working

50 / 333

2.4. PACKAGE INSTALLATION: GETTING MORE FROM PIP

on a package and want to avoid the long and boring process of reinstalling it each
time you need to test a change. This can be achieved by using the -e <directory>

flag:
1 $ pip install -e .

2 Obtaining file:///Users/jd/Source/daiquiri

3 Installing collected packages: daiquiri

4 Running setup.py develop for daiquiri

5 Successfully installed daiquiri

Here, pip does not copy the files from the local source directory but places a
special file called an egg-link in your distribution path. For example:

1 $ cat /usr/local/lib/python2.7/site-packages/daiquiri.egg-link

2 /Users/jd/Source/daiquiri

The egg-link file contains the path to add to sys.path to look for packages.
The result can be easily checked by running the following command:

1 $ python -c ”import sys; print('/Users/jd/Source/daiquiri' in sys.path ←֓

)”

2 True

Another useful pip tool is the -e option of pip install, helpful for deploying
code from repositories of various version control systems: git, Mercurial, Subversion
and even Bazaar are supported. For example, you can install any library directly
from a git repository by passing its address as a URL after the -e option:

1 $ pip install -e git+https://github.com/jd/daiquiri.git\#egg=daiquiri

2 Obtaining daiquiri from git+https://github.com/jd/daiquiri.git#egg= ←֓

daiquiri

3 Cloning https://github.com/jd/daiquiri.git to ./src/daiquiri

4 Installing collected packages: daiquiri

5 Running setup.py develop for daiquiri

6 Successfully installed daiquiri

For the installation to work correctly, you need to provide the package egg name
by adding #egg= at the end of the URL. Then, pip just uses git clone to clone the

51 / 333

2.5. USING AND CHOOSING FRAMEWORKS

repository inside a src/<eggname> and creates an egg-link file pointing to that same
cloned directory.

This mechanism is extremely handy when depending on unreleased version of
libraries or when working in a continuous testing system. However, since there is no
versioning behind, the -e option can also be very nasty. You cannot know in advance
that the next commit in this remote repository is not going to break everything.

Finally, all other installation tools are being deprecated in favor of pip, so can
confidently treat it as your one-stop shop for all your package management needs.

2.5 Using and Choosing Frameworks

Python has a variety of frameworks available for various kinds of applications: if
you’re writing a web application, you could use Django, Pylons, TurboGears, Tor-
nado, Zope, or Plone; if you’re looking for an event-driven framework, you could use
Twisted or Circuits; and so on.

The main difference between frameworks and external libraries is that applica-
tions use frameworks by building on top of them: your code will extend the frame-
work rather than vice versa. Unlike a library, which is basically an add-on you can
bring in to give your code some extra oomph, a framework forms the chassis of your
code: everything you do builds on that chassis in some way, which can be a double-
edged sword. There are plenty of upsides to using frameworks, such as rapid pro-
totyping and development, but there are also some noteworthy downsides, such as
lock-in. You need to take these considerations into account when you decide whether
to use a framework.

The recommended method for choosing a framework for a Python application
is largely the same as the one described in Section 2.3.1 - which makes sense, as
frameworks are distributed as bundles of Python libraries. Sometimes frameworks
also include tools for creating, running, and deploying applications, but that doesn’t

52 / 333

2.6. DOUG HELLMANN ON PYTHON LIBRARIES

change the criteria you should apply. We’ve already established that replacing an
external library after you’ve already written code that makes use of it is a pain, but re-
placing a framework is a thousand times worse, usually requiring a complete rewrite
of your program from the ground up.

To give an example, the Twisted framework mentioned earlier still doesn’t have
full Python 3 support: if you wrote a program using Twisted a few years back and
wanted to update it to run on Python 3, you’d be out of luck. Either you’d have to
rewrite your entire program to use a different framework, or you’d have to wait until
someone finally gets around to upgrading it with full Python 3 support.

Some frameworks are lighter than others. For example, Django has its own
built-in ORM functionality; Flask, on the other hand, has nothing of the sort. The
less a framework tries to do for you, the fewer problems you’ll have with it in the
future. However, each feature a framework lacks is another problem for you to solve,
either by writing your own code or going through the hassle of hand-picking another
library to handle it. It’s your choice which scenario you’d rather deal with, but choose
wisely: migrating away from a framework when things go sour can be a Herculean
task, and even with all its other features, there’s nothing in Python that can help you
with that.

2.6 Doug Hellmann on Python Libraries

Doug Hellmann is a senior developer at DreamHost and a fellow contributor to the
OpenStack project. He launched the website Python Module of the Week and has
written an excellent book called The Python Standard Library by Example. He is also a
Python core developer. I’ve asked Doug a few questions about the Standard Library
and designing libraries and applications around it.

53 / 333

Hey, this was only a sample chapter!

I hope that you did like the sample! It includes the complete table of contents

and a full chapter with its examples.

The full version of Serious Python includes:

• 13 chapters

• 8 interviews

• 330 pages

• 100+ code snippets

• Practical examples

• Available in PDF, HTML, EPUB and MOBI formats

• And a few more bonuses such as Docker images!

Buy the Book!

Now that you’ve read the sample,

you might be interested in buying the

whole book. It’s available online at

serious-python.com in different formats

and packages. Go check it out!

